The Ramanujan conjecture

\(\newcommand{\AA}{\mathcal{A}} \newcommand{\CH}{\mathcal{H}} \newcommand{\CL}{\mathcal{L}} \newcommand{\CO}{\mathcal{O}} \newcommand{\FF}{\mathbb{F}} \newcommand{\NN}{\mathbb{N}} \newcommand{\CC}{\mathbb{C}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\ZZ}{\mathbb{Z}}\) \(\DeclareMathOperator{\an}{an} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\colim}{colim} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\Id}{Id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Isom}{Isom} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\sh}{sh} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Sym}{Sym}\)
Proposition 3.4.   For \(n \geq 3\), \(M_n\) (resp. \(M_n^{\an}\)) represents the functor which sends a scheme \(S\) of characteristic 0 (resp. an analytic space) to the isomorphism classes of elliptic curves \(E\) on \(S\), equipped with an isomorphism \(\alpha \colon E_n \to (\ZZ/n\ZZ)^2\).